Problem 1.4

Use the cross product to find the components of the unit vector $\hat{\mathbf{n}}$ perpendicular to the shaded plane in Fig. 1.11.

Solution

Fig. 1.11 is shown below.

Fig. 1.11

Let \mathbf{r}_{1} be the displacement vector from $(1,0,0)$ to $(0,0,3)$, and let \mathbf{r}_{2} be the displacement vector from $(1,0,0)$ to $(0,2,0)$.

$$
\begin{aligned}
\mathbf{r}_{1} & =\langle 0,0,3\rangle-\langle 1,0,0\rangle
\end{aligned}=\langle-1,0,3\rangle, ~\left(\mathbf{r}_{2}=\langle 0,2,0\rangle-\langle 1,0,0\rangle=\langle-1,2,0\rangle\right.
$$

Take the cross product of \mathbf{r}_{2} and \mathbf{r}_{1} to get the vector perpendicular to the plane containing these vectors.

This perpendicular vector is \mathbf{n}; it points away from the origin by the right-hand corkscrew rule.

$$
\begin{aligned}
& \mathbf{n}=\mathbf{r}_{2} \times \mathbf{r}_{1} \\
& =\left|\begin{array}{rrr}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
-1 & 2 & 0 \\
-1 & 0 & 3
\end{array}\right| \\
& =\hat{\mathbf{x}}\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right|-\hat{\mathbf{y}}\left|\begin{array}{ll}
-1 & 0 \\
-1 & 3
\end{array}\right|+\hat{\mathbf{z}}\left|\begin{array}{ll}
-1 & 2 \\
-1 & 0
\end{array}\right| \\
& =\hat{\mathbf{x}}(6-0)-\hat{\mathbf{y}}(-3-0)+\hat{\mathbf{z}}(0+2) \\
& =6 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}
\end{aligned}
$$

Divide by the magnitude to get the corresponding unit vector.

$$
\hat{\mathbf{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}=\frac{6 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}}{\sqrt{6^{2}+3^{2}+2^{2}}}=\frac{6 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}}{7}=\frac{6}{7} \hat{\mathbf{x}}+\frac{3}{7} \hat{\mathbf{y}}+\frac{2}{7} \hat{\mathbf{z}}
$$

